
Chapter 11  Evaluation

This dissertation proposed, in Chapter 3, specified, in Chapters 4 through 9 and in

Appendix A, and investigated, as described in Chapter 10 and in Appendices B through

E, an approach to provide automated assistance to designers of concurrent software for

real-time applications.  The current chapter provides an evaluation of the approach.  First,

a summary evaluation is presented, followed by a more detailed discussion of the

approach as applied to the cases studies described in Appendices B through E.  The

detailed discussion considers two, main aspects: 1) the modeling and analysis of

specifications and 2) the generation and representation of designs.  The detailed

discussion helps to identify aspects of the approach that proved difficult to automate.  The

evaluation closes by considering the quality of the designs generated by CODA.

11.1  Summary Evaluation

The approach, as proposed in this dissertation, to automate the generation of

concurrent designs from data/control flow diagrams is evaluated in three respects.  First,

the approach is evaluated against the research objectives identified in (Chapter 3), section

3.3.  Second, the approach is evaluated against other approaches, as outlined in (Chapter

3), section 3.1.  Third, the strengths and weaknesses of the approach are delineated.



11.1.1  Evaluation Against Research Objectives

One research objective called for using heuristics from an existing design method,

for designing both tasks and modules in a concurrent design.  This objective is satisfied

through the specification of expert-system rules created from heuristics included in the

CODARTS design method.

A second research objective was to provide two-way traceability between the

data/control flow diagram and the resulting design.  This objective is satisfied by

specifying a Traces To/From relationship in the design meta-model.

A third research objective was to provide a basis for checking the resulting design

for completeness with respect to the specification and for consistency with respect to the

design meta-model.  The traceability relationship between a given data/control flow

diagram and a resulting design allows an assessment as to whether or not all specification

elements are allocated to one or more components in the design.  The consistency

between generated designs and the design meta-model is evaluated by checking

assertions whenever a design report is written to disk.

A fourth research objective was to capture the rationale for each design decision.

This objective is satisfied by maintaining a decision history for each entity in the design

meta-model.  The decision histories can be viewed interactively and are also saved to a

text file for each task and module whenever a design report is written to disk.

A fifth research objective was to allow alternative designs to be generated from

the same specification based upon variations in the intended target environment.  This

332



objective is satisfied by providing a representation for target environment descriptions

and then by writing various design-decision rules to consider aspects of the target

environment description when generating a design.  For the research reported in this

dissertation alternate designs can be generated based upon: 1) differences in task

inversion threshold, 2) variations in availability of message queuing services, and 3)

differences in the maximum number of inter-task signals allowed by a specific run-time

system.  The remaining information contained in the representation for target

environment descriptions provides for generating alternate designs during a design

configuration phase.  The configuration of designs is left as future research.

A sixth research objective was to elicit information from a designer only when

such information is essential and cannot be inferred.  This objective is satisfied through

specification of a set of concept-classification rules that derive semantic interpretations of

data/control flow diagrams, and also through an information elicitation process.  In some

cases semantic inferences could not be determined definitively; in some cases semantic

inferences could be made only after additional information is provided by a designer; in a

few cases semantic inferences could not be made.

The seventh, and final, research objective was to vary decision-making

responsibility depending upon the designer’s level of experience.  This objective is

satisfied by permitting designers to identify their level of experience and then by

considering this self-declared, experience level when making design decisions that might

benefit from a designer’s insight.  Decision-making is varied in two ways.  First, at times
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when an experienced designer is not available the design generator makes default

decisions.  Second, at times when an experienced designer is not available the designer

generator chooses not to consider certain design decisions requiring subtle reasoning.

11.1.2  Comparison Against Other Approaches

An earlier chapter, Chapter 3, section 3.1, evaluated a number of research efforts

that attempt to automate the generation of  designs from flow graphs.  How does the

approach proposed and specified in this dissertation compare against these earlier

research efforts?  Table 10 adds a column to a table, Table 1, presented in Chapter 3.  The

additional column enumerates the traits of the prototype, COconcurrent Designer’s

Assistant (CODA), described in Chapter 10.  This table provides a convenient means of

comparing CODA against these other approaches.

CODA is the only approach that represents data/control flow diagrams as the

input model.  CODA provides human-readable task and module specifications as output,

in addition to an internal representation of the design meta-model defined in Chapter 5 of

this dissertation.  The other approaches produce either some form of structure chart or an

input into a design simulator.  CODA uses the COBRA method to interpret the

data/control flow diagram and the CODARTS method to generate concurrent designs.

The other approaches use either criteria from Structured Design or unique mapping rules,
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Table 10.  Summary Comparison of Various Approaches to Design Generation

Trait

Research Effort

CAPO EARA STES SARA CODA

Input Model DFDs DFDs DFDs DFDs &
SVDs

D/CFDs

Output Model Structure
Charts

Structure
Charts

Structure
Charts

GMB Objects
& SARA
Structural
Model

Task & Module 
Specifications,
Design
Meta-Model

Decision
Method

Coupling &
Cohesion

Structured
Design

Structured
Design

Mapping
Rules

COBRA &
CODARTS

Underlying
Techniques

Clustering
Algorithms

Formal
Rule
Rewriting

Expert
System
Rules

Expert
System
Rules

Expert System
Rules, Semantic
Data Modeling

Completeness
& Consistency
Checking

No No No No Yes

Traceability Implicit Explicit Implicit Implicit Explicit

Design
Rationale
Capture

No No No No Yes

Requires
Elicitation
From Designer

No Yes Yes Yes Yes

Varies
Elicitation
With
Designer’s
Experience

No No No No Yes

Varies Design
With Target
Environment

No No No No To a limited
extent.

Connects With
CASE Tool

No No Yes Yes No
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not based on an existing design method.  CODA uses expert-system rules, but also

applies semantic data  modeling to both the input specification and the evolving design.

CODA treats instances of both the specification and the design as an object-oriented

database implementation of the relevant semantic data models, the specification and

design meta-models, respectively.  This treatment permits designs to be generated, as

with the other approaches, but also allows designs and specifications to be queried

interactively.

CODA is the only one of the approaches listed in Table 10 that: 1) provides

explicit checking for completeness of the generated design against the data/control flow

diagram and for consistency of the generated design against the design meta-model, 2)

captures the design rationale, and 3) varies the design based on variations in the intended

target environment.  CODA is one of only two approaches that provides explicit

traceability, and CODA is the only prototype that can provide traceability in two

directions, that is, from specification element to design element and from design element

to specification element.  Among the approaches that require elicitation from the

designer, CODA is the only approach that varies the nature of the elicitation based upon a

designer’s declared level of experience.  Although CODA does not include connection to

a CASE tool, the input to CODA is a text file that could be generated from existing

CASE databases using an extraction and formatting program.
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11.1.3   Strengths and Weaknesses of the Proposed Approach

Though the approach embodied in CODA meets the research objectives

established for this dissertation,  CODA exhibits some definite strengths and weaknesses.

CODA’s main strengths include the following.

CODA can make a substantial number of semantic interpretations from an RTSA

data/control flow diagram without consulting a designer.

CODA can check automatically a data/control flow diagram for proper semantic

classification.

CODA elicits additional information from a designer only where necessary.

CODA generates designs based upon heuristics contained within a preexisting

method for producing concurrent designs.

CODA refers subtle design decisions to an experienced designer.  When an

experienced designer is unavailable, CODA still produces a design that is complete

with respect to the data/control flow diagram.

CODA can check automatically the completeness of each generated design against

the specification and the consistency of each generated design against the design

meta-model.

CODA can view both specification and design as interconnected object-oriented

databases that can be queried about their structure and about relationships within

and between them.
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CODA captures design histories, including design rationale, for each design

element, and  these histories can be viewed interactively or saved for off-line

review.

CODA can vary, to a limited extent, designs based upon relevant characteristics of

the intended target environment.

CODA’s main weaknesses include the following.

When synchronous functions might be allocated among several existing tasks or

modules, CODA does not possess the application-specific knowledge required to

infer the best allocation, but must, instead, consult a designer.

CODA must elicit specification addenda from the designer to learn about

potentially important factors that cannot be represented on, nor inferred from, a

data/control flow diagram.

In many instances CODA cannot infer the synchronization requirements for data

flows sent between tasks but must, instead, elicit this information from an

experienced designer or must make a default decision.

In some instances, such as module operations, parameter definitions, and

task-module calling sequences, CODA encodes specific, mapping decisions, where

as a human designer might wish to consider alternate approaches.
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11.2   Analysis of the Case Studies

The preceding sections provided a summary evaluation of the approach.  A more

detail discussion of the approach, as applied to the case studies described in Appendices

B through E, follows.  This detailed discussion contains some analysis to support the

preceding summary evaluation.

11.2.1  Modeling and Analysis of Specifications

To automate the generation of concurrent designs, a means is required to model

and analyze specifications, that is, data/control flow diagrams.  As described in Chapter 4

and Appendix A, this problem is solved by constructing a semantic meta-model that

consists of a concept hierarchy, including appropriate axioms for each concept, and a set

of classification rules.  How well does this solution succeed?

11.2.1.1  Semantic Interpretation of Flow Diagrams

Table 11 presents an overview of the classification process across all

specifications, as provided in the four case studies described in Appendices B through E.

Each element of a specification can be depicted on a data/control flow diagram using one

of seven RTSA syntactic components.  For conciseness, these syntactic elements are

represented in five rows within Table 11.  Row two, Transformations, includes both data

and control transformations; row seven, Data Flows, includes both unidirectional and

bi-directional data flows.  Row one of Table 11 represents all nodes on a data/control

flow diagram, row five represents all arcs, and row 8 represents all elements.  
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The first column in Table 11 simply gives the total number of each type of

element that appears on the data/control flow diagrams in the case studies; for example,

the case-study diagrams contained 358 elements as follows: 1) 125 nodes of which 79

were transformations, 28 were terminators, and 18 were data stores and 2) 233 arcs of

which 91 were event flows and 142 were data flows.

The remaining five columns in Table 11 represent the manner in which

classification is achieved for the elements represented by each intersecting row.  Five

possibilities exist as shown in the legend following the table.

Table 11.  Classifications Over All Specifications for the Case Studies

Total @ # = ? +

All Nodes 125 28 (22%) 18 (14%) 59 (47%) 8 (6%) 12 (10%)

    Transformations 79 59 (75%) 8 (10%) 12 (15%)

    Terminators 28 28

    Data Stores 18 18

All Arcs 233 231 (99%) 2 (1%)

    Event Flows 91 91  

    Data Flows 142 140 (99%) 2 (1%)

All Elements 358 28 (8%) 18 (5%) 290 (81%) 8 (2%) 14 (4%)

 

Column Headings

@ Classified By The Designer

# Directly Representable Within The Specification Meta-Model

= Classified By CODA

? Tentatively Classified By CODA, Confirmed or  Overridden By The Designer

+ Classified By CODA, After Eliciting Additional Information From The Designer
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In certain cases a specification element can only be classified by the designer

(column headed by @ symbol).  As shown in Table 11 this occurs for each and every

terminator in the case studies.  No means exists to infer automatically whether a given

terminator represents a device, a user role, or an external subsystem.  In the case of data

stores, a syntactic element from RTSA represents directly the same concept within the

specification meta-model (column headed by # symbol).  The remaining columns

represent cases where CODA can infer the existence of a semantic concept by analyzing

the context in which syntactic elements appear on a diagram.  Three possibilities exist.

First, CODA can identify a semantic concept without any additional information (column

headed by = symbol).  Second, CODA can make a tentative classification of a semantic

concept, but must consult with the designer because the classification might be incorrect

(column headed by ? symbol).  Third, CODA can make a classification only after the

designer supplies some information that is not represented on the data/control flow

diagram but that might exist in some external specification or in the designer’s head

(column headed by + symbol).  For an ideal automated classifier, each element across all

specifications would fall within one of two columns: #, represented directly or =,

classified automatically.

A review of the last row of Table 11 indicates the degree of success achieved

when CODA’s automated classifier, using the classification rules specified in Appendix

A, is employed against the data/control flow diagrams shown in Appendices B through E.

For about 86% of the elements in the data/control flow diagrams the automated classifier
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succeeded without help.  The designer specified a classification in those 8% of cases that

represent terminators; these cases are not worth considering in detail.  Cases that are

worth considering in detail involve those 2% where CODA’s classification must be

confirmed by the designer or those 4% where CODA’s classification can be made only

after the designer supplies additional information.  In these cases, shown in the columns,

headed by ? and +, respectively, of Table 11, a large difference exists between the

classification of arcs, where 99% are classified without help, and the classification of

transformations, where only 75% are classified without help.

11.2.1.1.1  Problems Classifying Data Flows 

Only two, data flows, from among the 233 arcs considered in the case studies,

cannot be classified without consulting the designer.  Both of these appear in the

data/control flow diagram for the elevator control system (see Appendix D); in fact, the

two data flows are related.  A function, Scheduler, sends a data flow, Scheduler Request,

to another function, Accept New Request, which also sends a data flow, Elevator

Commitment, to the function Scheduler.  CODA’s automated classifier cannot determine

which of these two data flows, if either, is sent in response to the other; therefore, the

designer must be consulted.  The designer should know or be able to determine that one

or neither of the data flows is a response to the other.  Of course, the designer might not

know this information, so the automated classifier is prepared to make a default decision.

Only in situations such as this one will CODA’s automated classifier need to consult the

designer to classify arcs on a data/control flow diagram.  Thus, the performance of the

342



automated classifier against arcs will depend on the number of these cases that exist in a

given data/control flow diagram.  The performance of CODA’s automated classifier

against functions appears less effective.

11.2.1.1.2  Problems Classifying Functions

For the case studies considered in this dissertation, only 75% of transformations

could be classified automatically, while 10% could be classified tentatively, and 15%

required additional information from the designer before a classification could be made.

This information is reflected in Table 12, which also provides a breakdown of the

classifications by case study.

Table 12. Classification of Transformations by Case Study 

Case Study Transformations = ? +

All Specifications 79 59 (75%) 8 (10%) 12 (15%)

    Automobile Cruise Control 33 27 (82%) 6 (18%)

    Robot Controller 18 14 (78%) 1 (5%) 3 (17%)

    Elevator Control 14 13 (93%) 1 (7%)

    Remote Temperautre  Sensor 14 5 (36%) 1 (7%) 8 (57%)

  

Table 12 illustrates that the performance of the classification rules is much better

in the three case studies where the data/control flow diagram is constructed with the

COBRA semantic model in mind.  Considering only these three cases, the automobile

cruise control and monitoring system (see Appendix B), the robot controller (see
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Appendix C), and the elevator controller (see Appendix D), 83% (54/65) of

transformations were classified automatically, 11% (7/65) could be classified tentatively,

while only 6% (4/65) required additional information in order to make a classification.

For the remote temperature sensor case study (see Appendix E), where the data/control

flow diagram is developed using functional decomposition, the performance of CODA’s

automated classifier is singularly poor.  The numerous aperiodic functions that appear in

the data/control flow diagram provided by Nielsen and Shumate defy classification

without assistance from the designer.  A detailed analysis of specific problems follows.

11.2.1.1.2.1  Tentative Classifications

Eight transformations, encompassing about 10% of the transformations

considered across the cases studies, could only be classified tentatively using CODA’s

automated classifier.  As shown in Table 12, these include six transformations in the

automobile cruise control and monitoring system and one transformation in each of two

other cases studies, the robot controller and the remote temperature sensor.  Each of these

transformations involves the same type of situation.  Whenever the classifier finds a

function on a data/control flow diagram such that the function sends data only to data

stores and/or passive, device-interface objects, then, if the function is not classified

otherwise, the CODA tentatively identifies the function as synchronous.  This tentative

classification is based on the idea that in real-time systems updating data stores and

writing to passive devices is generally a fast operation that should be completed

atomically.  The classification is not always correct, however, because an operation might
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take long enough that the designer chooses to view the function as asynchronous.  The

designer confirms the tentative classification in seven of the eight cases among the

data/control flow diagrams given in the appendices.  In the remote temperature sensor

case study, the designer overrides CODA’s tentative classification where a function,

Maintain Temperature Table, updates a data store, Temperature Table.  The designer

overrides CODA based on his application-specific knowledge the data store is large

enough and/or the algorithm is time-consuming enough to warrant asynchronous

processing.  This information is not available to CODA but might be available to the

designer.  When the designer does not know whether to override the CODA’s tentative

decision, then the decision stands.

11.2.1.1.2.2  Assisted Classifications

In some situations CODA’s classifier recognizes that additional information might

be available that can help make a better classification.  In these situations, represented in

the last column of Table 12, CODA consults the designer to see what other information

exists.  Lacking additional information, CODA makes a default classification.  Table 12

indicates twelve instances among the case studies where the designer is consulted to help

classify a transformation.  These twelve instances represent two general situations.  The

first situation occurs when a function is triggered by a control transformation, yet the

triggered function receives input data from some other transformation.  In situations of

this type, the classifier recognizes that the triggered function might not be able to execute

during the triggered state-transition.  The designer is consulted on this question.  CODA
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then makes the best classification based upon any additional insight gleaned from

consulting the designer.  The second, and more frequent, situation occurs when a function

receives input from only a single source, or the same input from multiple sources.  In

such situations, CODA recognizes that the function might be classified as either a

synchronous or asynchronous function depending upon certain factors.  In order to gauge

these factors, CODA consults with the designer.  The designer is asked for one or two

facts depending upon the CODA’s needs.  First, the designer is asked if the time taken to

execute a function might unduly delay its invoking function(s).  The designer might also

be asked whether the algorithm embodied within the function takes substantial time to

execute.

11.2.1.2  Extensions and Restrictions to RTSA 

The foregoing cases where the designer is consulted represent situations where

information cannot be inferred directly from a data/control flow diagram.  To limit such

situations to the minimum number possible, the specification meta-model represents a

restricted application of RTSA notation, as embodied primarily in the ideas underlying

COBRA.  In addition, the specification meta-model admits a few extensions and requires

a few other restrictions to RTSA notation.  These extensions and additional restrictions,

beyond COBRA, are worth describing.

Two extensions to RTSA notation are included in the specification meta-model,

as described in Chapter 4 and Appendix A.  First, an event flow and data flow can be

emitted in parallel from a terminator to a transformation.  Each such event flow
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represents the arrival of an interrupt from the terminator.  (The data flow in this case

represents input data.)  Second, a terminator named "System" is assumed to exist in every

specification.  Event flows from this special terminator are used to represent timer events.

These two extensions make it possible to represent timers and interrupts on a data/control

flow diagram, and also help to automatically classify various transformations.

One major restriction imposed on RTSA notation by the specification meta-model

is the omission of continuous data flows.  This restriction is not very significant for

digital computer systems because most real-time software systems use discrete events and

data.  A number of minor restrictions are imposed by the axioms defined for each concept

in the specification meta-model.  None of these restrictions limits severely the range of

data/control flow diagrams that can be represented.  Perhaps the most significant

restriction is that parallel data flows in the same direction are not permitted between any

pair of nodes.  To compensate for this restriction, complex data flows must be described

using a data dictionary.  The restrictions imposed by the axioms serve primarily to

facilitate automated checking of the syntactical and semantic correctness of data/control

flow diagrams.  

11.2.1.3  Eliciting Helpful Information

As demonstrated in a preceding discussion, a software designer possesses access

to information beyond the data/control flow diagrams for a software system.  Such

information can exist in a textual specification, in pseudo-code, and in state-transition

diagrams.  Some of this amplifying information, while not needed to classify concepts on
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a data/control diagram flow, is critical to the generation of concurrent designs and must

be provided by a designer.  Other information can improve the quality of CODA’s

decision-making and, thus, a designer is asked, where possible, to provide this additional

information.  In several of the case studies CODA elicits such helpful information.

11.2.1.3.1  Eliciting Node Cardinality

In two case studies, multiple instances are required for transformations, data

stores, or terminators.  The robot controller problem requires six axis controllers, though

only one is shown on the data/control flow diagram.  In the elevator control system,

several transformations can require numerous instances, depending on the configuration

of the building to be served.  CODA elicits these cardinalities from the designer.

11.2.1.3.2  Eliciting Locked-State Events

CODA also elicits locked-state events.  Only one locked-state event, Ended, exists

in the robot controller case study, described in Appendix C.  Numerous locked-state

events appear in the elevator control system case study, presented in Appendix D.  The

locked-state events clearly include: Door Closed, Elevator Started, Elevator Stopped,

Destination Up, Destination Down, and No Destination.  Consideration of three other

events, however, present more difficulty.  Two events, Up Request and Down Request,

arrive from an asynchronous function, Accept New Request, and can occur at any time

whether the elevator controller is expecting them or not.  These events fail one criterion

for a locked-state event.  The third event, Approaching Requested Floor, arrives from an

asynchronous function, Check This Floor.  This event cannot, however, arrive unless the
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elevator controller is expecting it because the sensor that causes the input that generates

the event cannot detect the input unless the elevator controller has started the elevator

moving.  Approaching Requested Floor, then, is a locked-state event.

11.2.1.3.3  Eliciting Exclusion Groups

In the absence of other mechanisms, CODA asks the designer to specify any

mutually exclusive execution: 1) among each set of enabled functions that are managed

by the same control transformation and 2) among the set of state-independent periodic

and asynchronous functions in a given data/control flow diagram.  Mutual exclusion

among enabled functions appears in the automated cruise control system, described in

Appendix B.  Three enabled functions, Resume Cruising, Increase Speed, and Maintain

Speed, managed by the transformation, are never enabled in the same state.  The designer

places these transformations into an exclusion group.

Mutual exclusion among state-independent functions appears in the remote

temperature sensor case study, where one periodic function, Send Old DP, and one

asynchronous function, Get New DP, cannot execute simultaneously.  This can be

determined by reading the textual specification for the remote temperature sensor.  The

system uses a stop-and-wait protocol; only one packet is ever outstanding at a given time.

This means that the system is either waiting to retransmit an old packet or is free to send

a new packet, but the system cannot be in both states at the same moment.  The designer

places these transformations into an exclusion group.  In addition, an asynchronous

function, Maintain Temperature Table, and a periodic function, Monitor Periodic Query,
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cannot both access a shared data store, Temperature Table, simultaneously; thus, the

designer places these two transformations into an exclusion group.

11.2.1.3.4  Eliciting Aggregation Groups

The need to represent aggregation relationships appears in the elevator control

system case study, described in Appendix D.  Each elevator is composed of a set of

elements: a motor, a door, buttons, lamps, and a controller.  The designer places these

elements in an aggregation group.

11.2.2  Generation and Representation of Designs

Only after a specification is analyzed and all required information is available can

design generation commence.  Design generation is based upon heuristics from the

CODARTS design method, which are encoded as expert-system rules.  The following

sections consider the degree of difficulty faced when encoding various heuristics.  In

addition, cases are identified where an experienced designer can provide insight

unavailable to the design generator.  These topics are addressed for each of the

CODARTS design phases:  Task Structuring, Task Interface Definition, Module

Structuring, and Task and Module Integration.

11.2.2.1  Task Structuring

The structuring of tasks involves four decision-making processes.  Each of these

processes is considered in turn below.
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11.2.2.1.1  Candidate Tasks

During the generation of concurrent designs for the case studies described in

Appendices B through E, candidate tasks were identified for seven, distinct designs, as

listed below.

Automobile Cruise Control & Monitoring System, with Default TED (as specified

in Chapter 5), and an experienced designer (C1)

Automobile Cruise Control & Monitoring System, with Default TED, and a novice

designer, so CODA applies its default decision-making (C2)

Robot Control System, with Default TED, and an experienced designer (R1)

Robot Control System, slightly altered specification, with Default TED, and an

experienced designer (R3)

Elevator Control System, Small Building, with Default TED, and an experienced

designer (E1)

Elevator Control System, Large Building, with Default TED, and an experienced

designer (E4)

Remote Temperature Sensor application, with TED simulating an Ada

environment, and an experienced designer (RT)

Letter and number combinations, as indicated above in parentheses, are used to represent

each of these designs in column headings for several tables that follow.

Table 13 displays the number of rule executions required to identify candidate

tasks  for  each  of  the designs  listed above.  The table contains 12 rows, one for each of 
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Table 13.  Rule Executions to Identify Candidate Tasks

CODARTS Criterion & Rule Name C1 C2 R1 R3 E1 E4 RT Total

I/O Task Structuring Criteria

Asynchronous Device I/O Task:
     Asynchronous Device Interface 2 2 3 3 3 3 3 19

Periodic I/O Task:
    Periodic Device Interface 6 6 2 2 16

    External Subsystem

Internal Task Structuring Criteria

Asynchronous Task:
    Asynchronous Algorithm 2 2 3 3 5 15

Asynchronous Task:
    Enabled Asynchronous                 
      Algorithm

Asynchronous Task:
    Triggered Asynchronous              
        Algorithm

1 1 2

Control Task:
    State-based Control 2 2 1 1 1 1 8

Periodic Task:
    Periodic Algorithm 6 6 2 14

Periodic Task:
    Enabled Periodic Algorithm 3 3 6

Periodic Task:
    Triggered Periodic Algorithm

User Role Task:
   User Role

Total 19 19 8 8 8 8 10 80

the eleven rules specified for candidate-task identification and one for the total rule

executions for each design.  The rows are organized into two groups, based upon
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categories of task structuring criteria included in CODARTS, I/O Task Structuring

Criteria and Internal Task Structuring Criteria.  Each rule is identified by the specific

CODARTS task structuring criterion addressed by the rule, where applicable, followed

by the name of the rule, as specified in preceding chapters of this dissertation.  The table

also contains eight columns, one for each of the seven designs and one for the total

number of executions of each rule.

The heuristics required to identify candidate tasks were easily automated because

previous analysis of the data/control flow diagram had produced a semantic interpretation

for the various transformations.  As shown in Table 13, all but four of the 11 rules were

executed at least once.  These four rules remain unexecuted because no transformation of

the type recognized by each of these rule appears in any of the case studies.

11.2.2.1.2  Remaining Transformations

The next decision-making process allocates the remaining transformations, that is,

those not leading to candidate tasks, among the set of candidate tasks identified by the

previous decision-making process.  Table 14 tabulates the rule executions required to

make these decisions for the case studies.  All but one of the rules listed in Table 14

executes without consulting the designer.  One rule, Designer Specifies Allocation,

consults the designer whenever a transformation representing a synchronous function

connects directly to more that one candidate task.  In such cases, allocation of the

transformation might be made to any of the connecting tasks or to a separate task.  The

decision  depends typically on a  designer’s judgment  about the specific application.  For
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this  reason,  CODA consults the  designer. When  the designer cannot provide additional

insight then CODA makes a default decision to allocate the transformation in question to

  

Table 14.  Rule Executions to Allocate Remaining Transformations to Tasks

CODARTS Task Cohesion
Criterion & Rule Name

C1 C2 R1 R3 E1 E4 RT Total

Control Cohesion:
    Triggered Synchronous Function 4 4 3 3 1 1

 
16

Sequential Cohesion:
    Synchronous Function With         
         Synchronous Outputs

6 6 2 2 16

Sequential Cohesion:
    Synchronous Function With         
         Synchronous Inputs

    
2  2

Sequential Cohesion:
    Outputs Only Locked-State Event
         To Control Object

   

Sequential Cohesion:
    Responding Synchronous             
        Function

     

Sequential Cohesion:
    Passive Device Interface Object 10 10 2 2 24

Sequential Cohesion:
    Aggregated Passive Device 3 3 6

Designer Choice:
    Implement Designer Allocation 2 1 3 6

Designer Choice:
    Designer Specifies Allocation 2 1

  
3 6

Total 20 20 9 7 6 6 8 76
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 a separate task.  Another rule, Implement Designer  Allocation, implements any choice

made by the designer.  For the case studies reported in this dissertation, CODA consulted

the designer when allocating transformations to tasks during six of 70 rule executions, or

in about 9% of the cases, excluding the implementation of the designer’s choice.  When

viewed across the rule executions shown in Tables 13 and 14, CODA consulted the

designer in only six of 150 rule executions, or in about 4% of the cases. 

Two rules listed in Table 14 were not executed while generating designs for the

case studies reported in this dissertation.  These rules recognize situations that do not

occur in any of the case studies.  One rule, Outputs Only Locked-State Event To Control

Object, recognizes synchronous functions that emit only locked-state events to a control

object.  For example, in the elevator control system specified in Appendix D, a

transformation, Check This Floor, emits only a locked-state event, Approaching

Requested Floor, to a control object, Elevator Controller.  Should the transformation

Check This Floor represent a synchronous function then the rule, Outputs Only

Locked-State Event To Control Object, would apply.  In the case study, however, the

transformation, Check This Floor, represents an asynchronous function.

The other unexecuted rule, Responding Synchronous Function, listed in Table 14

recognizes situations where a synchronous function receives a data flow and then

generates a data flow in response, but where the function generates no data flow  on its

own initiative.  No such situation appears in the case studies.
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11.2.2.1.3  Task Mergers

During the next decision-making process required to structure tasks, CODA

considers whether any of the candidate tasks might be merged based upon various forms

of cohesion criteria, as specified in CODARTS.  In practice, consideration of task

mergers can be made either before or after remaining transformations are allocated to

tasks.  In fact, during the research associated with this dissertation, both orderings were

tested and found to produce the same results.

The automation of heuristics for considering task mergers proved to be somewhat

difficult.  One difficulty arises because multiple situations can exist in a specification that

lead to different decisions about which tasks to merge.  In addition, some forms of task

mergers will still allow other cohesion criteria to be applied to the merged tasks, while

other forms of task merger bar the application of additional cohesion criteria.  For

example, when a periodic input task is merged with a control task then the merged task is

not a candidate for combining with other periodic tasks based on temporal cohesion.  To

address these situations, careful consideration must be given to preferred rule orderings

when multiple forms of cohesion might be applied in the same situation.  A second

difficulty appears when considering the application of temporal cohesion to tasks without

identical periods.  The periods of such tasks  must share a common factor but, to avoid

combining tasks of differing priority, the periods must be relatively close to each other

and the tasks with the closest qualified periods should be considered first.  Writing a rule

to recognize this combination of conditions proved difficult.  Even when such a rule

356



exists, the actual decision to combine tasks under these conditions requires

application-specific knowledge unavailable to CODA.  For these reasons, temporal

cohesion is not applied to tasks without identical periods, unless an experienced designer

is available for CODA  to consult.  When an experienced designer is available, CODA

recognizes situations where tasks without identical periods might be combined and then

refers those situations to the designer for a final decision.  When an experienced designer

is unavailable then CODA will not combine tasks without identical periods. 

Table 15 enumerates the rule executions required to consider task mergers for

each of the case studies described in Appendices B through E.  Each specified rule

executes at least once, except for one rule, Periodic Tasks With Multiple Instances.  The

unexecuted rule recognizes tasks with multiple, identical instances.  Such tasks can be

inverted based upon the temporal and functional cohesion criteria of CODARTS;

however, no situation of this type appears among the case studies.

11.2.2.1.4  Resource Monitors

During the final decision-making process required to structure tasks, CODA

considers the need for resource monitor tasks in the design.  Resource monitor tasks are

required whenever two or more tasks generate output for a passive device and when the

outputs for each task must be generated atomically and in order.  Two rules recognize

such situations.  One rule recognizes when multiple tasks write to the same passive

device.  The second rule recognizes when a single, multiple-instance task writes to a

passive device.  Table 16 lists the applicable rule executions for the case studies.
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Table 15.  Rule Executions to Consider Task Mergers

CODARTS Cohesion Criterion &
Rule Name

C1 C2 R1 R3 E1 E4 RT Totals

Mutual Exclusion:
    Controlled Task Exclusive            
         Execution

2 2
 

4

Mutual Exclusion:
    Independent Task Exclusive         
         Execution

2 2

Task Inversion:
    Task Inversion

  
 3

 
5

 
8

Sequential Cohesion:
    Exclusive Input To Control Task 1 1

 
 2

Sequential Cohesion:
    State-Dependent Input To             
      Control Task

2 2 4

Temporal/Functional Cohesion:
    Periodic Task With Multiple        
          Instances

     

Temporal/Functional Cohesion:
    Periodic Tasks With The Same     
        Periods

5 5 10

Temporal/Functional Cohesion:
    Periodic Tasks With Harmonic     
        Periods

1 1

Totals 9 8 5 7 2 31
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Table 16.  Rule Executions to Consider Resource Monitors

CODARTS Task Structuring
Criterion & Rule Name

C1 C2 R1 R3 E1 E4 RT Total

Resource Monitor Task:
    Multi-Task Access

 

Resource Monitor Task:
    Multi-Instance Task Access 2 2

Total 2 2

Only the elevator control system case study requires resource monitors.  A

multiple-instance task, Elevator Controller, writes to two passive output devices, floor

lamps and direction lamps.  This situation disappears when the elevator control system is

expanded to a larger building because CODA inverts the Elevator Controller tasks into a

single task.  This inversion occurs in an effort to reduce the task switching overhead.

Other situations might arise where resource monitor tasks prove useful.  For

example, if a single-instance task writes output to a passive device and the passive device

takes substantial time to perform the processing associated with the device and the

single-instance task has useful work to perform, then the passive device might be given a

monitor task.  No rule of this nature was defined for this dissertation.  Should such a rule

be defined then an experienced designer would need to be consulted at some stage in the

process to determine the time required to perform output for each passive device.
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11.2.2.2  Task Interfaces

The definition of task interfaces occurs as a series of five decision-making

processes, discussed in turn below.  First, however, three alternate designs must be

introduced.  In the case studies, a number of alternate designs are generated based upon

differences in the intended target environment, or upon differences in inter-task message

priorities.  These alternate designs lead to variations in the interfaces between tasks; thus,

the tables enumerating rule executions for the definition of task interfaces include three

additional columns, as listed below.

Robot Controller System, when TED indicates no message queuing available and

the designer is experienced (R2)

Elevator Control System, with Default TED, where an experienced designer assigns

message priorities (E2)

Elevator Control System, when TED indicates priority queues available, where an

experienced designer assigns message priorities (E3)

11.2.2.2.1  External Task Interfaces

During the first decision-making process required to define task interfaces, CODA

examines the arcs on a data/control flow diagram and determines which arcs map to task

inputs, outputs, interrupts, and timers and which arcs map to data flows and event flows

between tasks.  These decisions were quite straightforward to automate.  CODA requires

no interaction with a designer to make any of these decisions.  Table 17 shows the rule

executions required for the case studies.
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Table 17.  Rule Executions to Allocate External Task Interfaces

Rule C1 C2 R1 R2 R3 E1 E2 E3 E4 RT Totals

Timer Event 15 15 2 2 2 2 38

Interrupt 2 2 3 3 3 3 3 3 3 3 28

Data Input  11 11 3 3 3 5 5 5 5 2 53 

Data Output 3 3 3 3 3 5 5 5 5 2 37

Inter-Task Exchange 18 18 19 19 19 10 10 10 8 12 143

Totals 49 49 30 30 30 23 23 23 21 21 299

11.2.2.2.2  Control And Event Flows

Once the inter-task event flows are known, CODA can consider each one for

mapping to either: 1) a software signal, 2) a tightly-coupled message, or 3) a queued

message.  The rule executions required for the case studies are given in Table 18.  Only

one of the rules, Event Flow To Message, considers design decisions that depend upon

the level of a designer’s experience.  When an experienced designer is available, CODA

asks the designer whether the sending task must wait for the receiving task to accept an

event before continuing.  If the designer knows this information and provides it, then

CODA can make a better decision.  If the designer does not know the information or if

the designer is inexperienced, then CODA makes a default mapping to a queued message.

For the case studies in this dissertation, CODA consults the designer only twice in 64 rule

executions, or for about 3% of the control and event flows.
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Table 18.  Rule Executions to Allocate Control and Event Flows

Rule C1 C2 R1 R2 R3 E1 E2 E3 E4 RT Totals

Control Flow To Software         
  Event

 

Event Flow To Software Event 4 4 4 2 2 2 2 20

Locked-State Event Flow To     
   Tightly-Coupled Message

     

Control Flow To                        
  Tightly-Coupled Message

1 1 2

Event Flow To Message 1 1 1 3

Ride On Existing Queued          
   Message

6 6 3 3 3 21

Ride On Existing                        
  Tightly-Coupled Message

5 5 1 11

Input Event To Queued              
  Message

2 2 1 1 1 7

Totals 15 15 8 8 8 2 2 2 2 2 64

As indicated in Table 18, each rule, save two, executes at least once during the

case studies.  One unexecuted rule, Control Flow To Software Event, maps control flows,

that is, triggers, enables, and disables from control tasks, to software events whenever the

number of control flows to be mapped falls below a threshold defined in the target

environment description.  This situation never arises in the case studies.  Another

unexecuted rule, Locked-State Event Flow To Tightly-Coupled Message, also recognizes

a situation that does not arise in the case studies.
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11.2.2.2.3  Data Flows

After mapping the inter-task control and event flows to specific mechanisms,

CODA maps each inter-task data flow to either a tightly-coupled message or a queued

message.  Table 19 enumerates the rule executions required to map data flows to

messages for the case studies.

Only two of the rules listed in Table 19 consider consulting the designer.  One of

these rules, Stimulus To Message, handles mapping decisions when insufficient

information exists to allow CODA to select a precise mapping.  Here, CODA consults an

experienced designer about the synchronization requirements surrounding data flows

between two tasks.  If the designer cannot provide any help or if no experienced designer

is available, then CODA maps the questionable data flow to a queued message.  CODA

also consults a designer upon recognizing that a tightly-coupled message is exchanged

between any task and a device input/output task.  In such cases, one of the tightly-coupled

messages is likely to be sent in answer to the other; however, CODA might be unable to

determine the precise relationship between the two messages.  If the designer cannot

provide any help or if no experienced designer is available, then CODA assumes that the

tightly-coupled message from the device input/output task answers the corresponding

message flowing to the device input/output task.  For the case studies, CODA consults

the designer in 20 of the 80 rule executions, or in 25% of the cases.  This represents

substantial interaction between CODA and the designer.
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Table 19.  Rule Executions to Allocate Data Flows

Rule C1 C2 R1 R2 R3 E1 E2 E3 E4 RT Totals

Stimulus Rides On Existing          
 Queued Message

2 4 4 4 1 15

Stimulus Rides On Existing          
   Tightly-Coupled Message

2 2

Response Rides On Existing         
   Tightly Coupled Message

     

Response To Tightly-Coupled      
    Message

1 1 2

Stimulus To Control Task Rides   
  With Events

1 1 1 3

Stimulus To Resource Monitor     
  Or Control Task

Stimulus From Device Input Task 1 1

Receives Only Stimuli From         
  Multiple Senders

6 6 6 4 2 24

Stimulus For Locked State Event 1 1 1 3

Stimulus To Message 1 1 4 4 4 5 19

Stimulus For Reverse Channel 2 2 1 1 1 1 1 9

Finding Request & Response 1 1 2

Totals 3 3 12 12 11 8 8 8 6 9 80

11.2.2.2.4  Message Priorities and Queue Interfaces

When an experienced designer is available, CODA examines the queued

messages received by each task.  For each task that receives queued messages from

multiple sources, CODA consults with the experienced designer in an effort to learn if

any of the messages require varying priorities.  Considering this consultation requires a
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single rule, executed once for each of the ten designs generated for the case studies.  No

means exists to distinguish message priorities without consulting a designer.  For only

three of the designs, E2, E3, and RT, does a designer actually provide varying message

priorities.

After any message priorities are assigned, CODA examines the queued messages

flowing among the various tasks in a design and maps those messages into an appropriate

queuing mechanism, depending upon the message queuing services provided by the

intended target system.  The rule executions required to make these decisions for the case

studies are enumerated in Table 20.  None of the rules listed in Table 20 requires

consultation with a designer.  One rule, Single Priority, Only Priority Queues Available,

handles situations where queued messages are exchanged between tasks at only one

priority but where the intended target system provides only priority message queues.

This combination of requirements should be very rare; no such situation occurs among

the case studies.

11.2.2.3  Module Structures

The structuring of modules requires a series of six decision-making processes.

Each process is discussed in turn below.

11.2.2.3.1  Candidate Modules

Table 21 shows the number of rule executions required to identify candidate

modules for each of the case studies.  The heuristics that identify candidate modules were

easily automated  because previous analysis of the data/control flow diagrams produced a
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Table 20.  Rule Executions to Allocate Queue Interfaces

Rule C1 C2 R1 R2 R3 E1 E2 E3 E4 RT Totals

Single Priority, Message Queue
     Available         

1 2 4 4 4 2 2 3  22

Single Priority, Only Priority     
    Queues Available

Single Priority, No Queues        
    Available

 4    2  6

Multiple Priority, Only              
   Message Queues Available

2 2

Multiple Priority, Priority          
   Queues Available

2 2

Multiple Priority,  No Queues    
   Available

1 1

Totals 1 2 4 4 4 4 4 4 3 3 33

Table 21.  Rule Executions to Identify Candidate Modules

Rule C1 C2 R1 R3 E1 E4 RT Totals

Device-Interface Module 12 12 5 5 8 8 3 53

State-Transition Module 2 2 1 1 1 1 8

Data-Abstraction Module 11 11 2 2  1  1 1 29 

State-Dependent Function-Driver     
       Module

 1 1 1 1  4 

Triggered Algorithm-Hiding            
     Module

     

Subsystem Interface Module

User Interface Module

Totals 26 26 9 9 10 10 4 94
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semantic interpretation of the various transformations.  As shown in Table 21, three of

the seven rules were not executed for the case studies.  These rules recognize situations

that do not arise in the case studies.  None of the case studies included terminators

representing user roles or external subsystems.  In addition, none of the case studies

required grouping triggered transformations, except where those transformations operated

on a virtual device or a data store.

11.2.2.3.2  Functions of Data-Abstraction Modules

During the next decision-making process CODA attempts to allocate

transformations to data-abstraction modules, identified during the previous

decision-making process.  Table 22 enumerates the required rule executions for the case

studies.  Most of the heuristics were straightforward to specify.  One rule, Connects With

Multiple Data Stores, handles situations where a transformation interacts with multiple

data stores but where CODA cannot make a definite decision about allocating the

transformation.  This rule is only used when an experienced designer is available.  The

rule consults the designer to see if the designer can make an appropriate allocation.

Where an experienced designer is unavailable or cannot indicate an appropriate allocation

then the transformation is left for later decision-making processes.  Where the designer

does indicate an allocation, then another rule, Function Allocated To Data Store,

implements the designer’s decision.  In the case studies, the design generator did not need

to consult a designer regarding this issue, and so these two rules were never executed.
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Table 22.  Rule Executions to Allocate Functions to Data-Abstraction Modules

Rule C1 C2 R1 R3 E1 E4 RT Totals

Connects With Only One Data Store 1 1  2

Writes To Only One Data Store 11 11 2 2 3 3 1 33

Sole Reader From Data Store  5 5   1  1 1 13

Connects With Multiple Data Stores    

Function Allocated To Data Store      

Totals 16 16 3 3 4 4 2 48

11.2.2.3.3  Remaining Transformations

During the third decision-making process CODA examines transformations not

yet allocated to a module in an attempt to place each of them in an existing module, or to

allocate a new module for each.  The rule executions required to make these decisions for

the case studies are enumerated in Table 23.  The heuristic that allocates a module based

on each asynchronous function in a data/control flow diagram is straightforward.  In

general, however, CODA could not make decisions to allocate synchronous functions to

existing modules because such allocations require application-specific knowledge,

unavailable to CODA.  For synchronous functions, one rule, User Specifies Allocation,

consults an experienced designer, where available.  If an experienced designer indicates

an allocation, then another rule, Synchronous Function Allocated To IHM, implements

the designer’s decision.  Where the designer does not make an allocation or where no

experienced designer is available, then the transformation in question is allocated in the

next decision-making process.
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Table 23.  Rule Executions to Allocate Remaining Transformations to Modules

Rule C1 C2 R1 R3 E1 E4 RT Totals

Active Functions 2 2 1 1  5 11

Synchronous Function Allocated To
    IHM

2 1 3 6

User Specifies Allocation  2 1   5  8

Totals 6 4 1 1 13 25

11.2.2.3.4  Isolated Elements

Next CODA considers for allocation any unallocated transformations or data

stores remaining on a data/control flow diagram.  The rule executions that consider these

allocations for the case studies are listed in Table 24.  One rule, Isolated Function,

allocates a module for each function not allocated to a module by previous decisions.  In

the case study, all functions were allocated previously, and so this rule never executes.

Table 24.  Rule Executions to Allocate Isolated Elements to Modules

Rule C1 C2 R1 R3 E1 E4 RT Totals

Isolated Update 2 2  4

Isolated Function

Isolated Data Store  1  1   2 

Totals 2 2 1 1 6
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The two remaining rules in this decision-making process deal with isolated data

stores.  One rule, Isolated Update, recognizes situations where a data store interacts only

with one transformation and where the interaction is an update.  CODA  understands that

two possibilities exist: 1) the data store provides local storage for the updating

transformation or 2) the data store provides an interface to another subsystem that is

unknown to CODA.  CODA asks the designer to indicate the pertinent case.  CODA then

takes an appropriate action with respect to the data store.  Each data store that remains

unallocated is mapped to a distinct data-abstraction module by the remaining rule,

Isolated Data Store.

11.2.2.3.5  Module Subsumption

After allocating each transformation and data store on a data/control flow diagram

to some module, CODA examines the relationships between data-abstraction modules.

Where one data-abstraction module is read by only one other module and the reading

module is also a data-abstraction module, the possibility exists to have the reading

module subsume the module from which it reads.  Whether this subsumption should

occur depends upon application-specific knowledge unavailable to CODA.  For this

reason, when an experienced designer exists, CODA consults the designer about each

such case in the evolving design.  CODA takes an appropriate action as directed by the

designer.  Where no experienced designer exists CODA does not consider subsuming

data-abstraction modules.  The appropriate rule executions for the case studies are given

in Table 25.
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Table 25.  Rule Executions to Consider Module Subsumption

Rule C1 C2 R1 R3 E1 E4 RT Totals

Exclusive Read Between DAMs 2  2

Totals 2 2

11.2.2.3.6  Module Operations

During the final decision-making process needed to structure modules, CODA

determines the operations provided by each module and the parameters needed for each

operation.  These decisions could be left to the designer because a range of different

mappings is possible depending upon the designer’s preferences.  Instead, CODA uses

specific mapping rules to create operations and parameters from a data/control flow

diagram and the evolving design.  The rules operate without consulting the designer.

Later, if desired, the designer can alter the results from these automated mappings.  Table

26 displays the rule executions required to determine module operations for the case

studies.  Only two of the mapping rules were not executed during the case studies.  Both

rules involve a stimulus entering and a response leaving a single transformation, where

the stimulus and response have the same name.  Each rule maps the stimulus-response

pair to an input/output parameter for the appropriate operation.  None of the case studies

included such a situation.
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Table 26.  Rule Executions to Determine Module Operations

Rule C1 C2 R1 R3 E1 E4 RT Totals

Allocate Arc Internal To IHM 19 18 5 4 4 4 5 59

Interface Module Skeleton 12 12 5 5 8 8 3 53

Signal To Interface Module    5 5 10 

Signal From Interface Module 15 15 4 4 4 4 46

Stimulus Without Response From    
     Interface Module

2 1 3 3 1 10

Stimulus Without Response To        
     Interface Module

8 8 6 5 3 3 3 36

Stimulus With Response To             
    Interface Module

5 5 1 1 12

Same Stimulus And Response With
    Interface Module

Interface Module Without Drivers 1 1 2 2 6

STM 2 2 1 1 1 1 8

DAM Get 19 20 3 3 45

DAM Put 1 1 1 1 4

DAM Update

External Function 19 19 11 10 5 5 9 78

External Function Invocation 12 12 7 7 1 1 40

Deactivate Module 3 3 6

Multiple Signals To Function 1 1 2

Signals From Function 1 1 4 6 3 3 1 19

Same Stimulus Response With         
   Function

Stimulus To Function 1 1 7 6 6 6 8 35

Stimulus Or Response From             
   Function

9 9 10 9 6 6 7 56

Totals 127 127 68 65 50 50 38 525
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11.2.2.4  Task and Module Integration

During the remaining design phase CODA integrates the task and module

structures into a concurrent design.  Three decision-making processes compose this

phase.  The rule executions for each of the three processes, applied to the case studies, are

given in Tables 27, 28, and 29.  All of these rules operate without consulting the designer.

Two rules, Place SIM and Place UIM, are not executed for the case studies because no

user roles or external subsystems appear.  Two additional rules, Place Selected IHMs

With Incompatible Cardinality and Operation Yields Data, also do not execute because

the rules recognize situations that do not appear in the case studies.  Calling sequences

between tasks and modules can be arranged using a variety of techniques depending upon

decisions made by a designer.  Instead, several rules, listed in Tables 28 and 29, encode

mapping of specific situations to specific calling sequences.  In this way, the designer

need not be consulted on these issues.

11.2.2.5  Assessment of Automated Design Generation 

How successful was the approach taken to automate the generation of concurrent

designs?  For the case studies described in Appendices B through E, the CODA design

generator made 1,568 design decisions.    CODA made 1,524 design decisions, or about

97%, without consulting the designer.  CODA consulted an experienced designer

regarding only 44, or about 3%, of those design decisions.  Table 30 enumerates the types

of decisions where CODA asked for help.   Had an experienced designer been unable to

help, CODA would have taken default decisions for each of these cases.
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Table 27.  Rule Executions to Place Modules

Rule C1 C2 R1 R3 E1 E4 RT Total

Place STM  2 2 1 1 1 1 8

Place DIMs For Asynchronous         
     Devices

2 2 3 3 3 3 3 19

Place DIMs For Periodic Devices 6 6 2 2 16

Place Selected Shared IHMs 2 2 4

Place Selected Captive IHMs 3 3 3 3 3 3 8 26

Place Selected IHMs With                
    Incompatible Cardinality

Place DAMs 10 11 3 3 1 1 1 30

Place DIMs For Physically               
    Contained Passive Devices

3 3 6

Place SIM

Place UIM

Total 25 26 12 12 11 11 12 109

Table 28.  Rule Executions to Link Tasks and Modules

Rule C1 C2 R1 R3 E1 E4 RT Totals

Invocation Via Transformation 15 14 2 2 4 4  41

Invocation Via Parameter Matching 1 1 2

Invocation Via Data Store  3 4 2  2   11

Totals 19 19 4 4 4 4 54
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Table 29.  Rule Executions to Link External Modules

Rule C1 C2 R1 R3 E1 E4 RT Totals

Transformation Requires                  
    Transformation

5 5  10

Transformation Requires Data Store 15 14    29 

Operation Takes Data 1 1

Operation Yields Data

Totals 20 20 40

Table 30.  When CODA Asks the Designer for Help

Type of Decision C1 C2 R1 R2 R3 E1 E2 E3 E4 RT Totals

Mapping a Data Flow to a Message 1 5 5 4  5 20

Allocating a Synchronous Function
    to a Module

 2 1   5 8 

Allocating a Synchronous Function
    to a Task

2 1 3 6

Assigning Priorities to Messages 1 1 1 3

Combining Modules 2 2

Allocating an Isolated, Update-Only
    Data Store to a Module

2 2

Mapping a Control Flow or Event
    Flow to a Message

1 1 2

Combining Tasks with Compatible,
    but not Identical, Periods

1 1

Totals 7 9 5 6 1 2 14 44
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11.3  Aspects of the Approach that Proved Difficult to Automate

Certain aspects of the analysis of data/control flow diagrams and the generation of

concurrent designs proved difficult to automate.  In such cases CODA consults an

experienced designer, if available.  Where an experienced designer is not available, or

where the designer cannot provide any additional insight, CODA takes a default decision.

Default decisions generally lead to an increased number of tasks and modules and to the

use of queued messages where tightly-coupled messages might otherwise be appropriate.

Some specific problems are discussed below.

11.3.1  Specification Analysis

For the case studies described in Appendices B through E, approximately 86% of

the semantic concepts could either be represented directly with a data/control flow

diagram or inferred from such a diagram using the classification rules specified in

Appendix A.  CODA could not classify the remaining 14% of the semantic concepts

without consulting the designer.  Where a designer cannot help with the classification,

CODA uses default decisions to classify a concept.  The difficult cases are identified

below.

11.3.1.1  Aperiodic Functions

In some cases, where an aperiodic function might be classified as either

asynchronous or synchronous, CODA’s classification rules make a tentative classification

and then CODA asks the designer to confirm or override the decision.  In other cases,

CODA’s classification rules cannot even make a tentative classification for an aperiodic
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function.  Where the designer cannot provide assistance, CODA classifies an aperiodic

function as asynchronous.

In general, an aperiodic function might be classified as synchronous whenever the

function will not unduly delay any invoking transformation and whenever that function

does not take a substantial amount of time to execute.  These factors are not shown on a

data/control flow diagram.  One simple approach to address this problem might be to

include attributes in the mini-specification for each transformation.  One of these

attributes could specify the estimated, maximum execution time for the processing within

the transformation.  A more sophisticated approach to overcome the problem might be to

define a language for expressing the pseudo-code within data transformations.  Such a

language could include information about the time taken to execute sequences of

statements in the pseudo-code and about the number of iterations expected for each

invocation of looping constructs within the pseudo-code.  A similar approach is taken in

the MARS project, conducted by researchers at the Technical University of Vienna.

[Pospischil92]  The MARS project allows each task to be specified using Modula R, an

extension of Modula 2 that can be marked with primitives to facilitate the timing analysis

of a task.  No matter which approach is adopted, the information recorded might serve as

useful input to an automated performance analysis of generated designs.

11.3.1.2  Triggered Functions Receiving Data Flows

Another situation arises where CODA’s classification rules require additional

information.  When a triggered function receives a data flow from another transformation,
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CODA’s classification rules cannot infer whether the triggered function can finish during

a state transition.  This problem occurs because no means exist to establish whether or not

a message containing the data flow will always be present at the time the function is

triggered.  In such cases, CODA must consult a designer to elicit the missing information.

When a designer cannot provide assistance, CODA classifies the function as a triggered,

synchronous function.

One approach to overcome this problem is for the designer to avoid writing

specifications that allow data flows directly to triggered functions.  A less restrictive

approach might be to include within a pseudo-code language for data transformations a

notation for representing the reception of data flows and event flows.  Such a notation

could allow a designer to specify cases where an incoming data flow or event flow is

expected to be available at the time the receiving data transformation is invoked.  This

information, coupled with the timing information gleaned from an analysis of the

pseudo-code internal to the data transformation, might enable an automated classifier to

infer whether a triggered function can finish during a state transition.

11.3.1.3  Stimulus versus Response

A different case that proved difficult to classify can occur when data flows are

exchanged between a pair of functions.  In some such cases, no evidence exists to

distinguish which of the data flows, if either, is sent in response to the other.  Here, a

designer must be consulted.  When a designer cannot help, CODA classifies neither data

flow as a response.
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This problem might be overcome by providing a language for specifying, within

the pseudo-code for data transformations, the transmission and reception of data flows

and event flows.  Analysis of the pseudo-code might then facilitate automated

classification of data flows as stimuli or responses, based upon the constructs specified

for sending and receiving the data flows.

11.3.1.4  Classifying Terminators

Another problem relates to the classification of terminators.  Any time a

terminator appears on a data/control flow diagram CODA must ask a designer to indicate

whether the terminator is a device, a user role, or a subsystem.  This problem is

ameliorated somewhat by allowing the designer to indicate with a single answer that all

of the terminators in a given diagram represent devices.  Whenever other types of

terminators exist the designer is queried more closely about each terminator.  When a

designer cannot classify a terminator, CODA assumes the terminator to be a device.

Adopting a naming convention for terminators could allow the designer to represent this

information directly on the data/control flow diagram and, thus, to avoid a potentially

tedious dialog.  Alternatively, the RTSA notation could be extended to allow

representation of terminator types.

11.3.1.5  Eliciting Required Information

Other situations also require consultation with a designer.  Once CODA properly

classifies the elements of a data/control flow diagram, some elements will require

additional information that can only be provided by the designer.  This involves two
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specific cases:  1) periods for timers and 2) maximum rates for system stimuli.  CODA

does not provide defaults for this information because these details are critical to the

performance of the design.

Here, CODA’s interactions with the designer might be reduced or eliminated by

including a language for annotating arcs in a data/control flow diagram.  Were such a

language available, then the designer could write essential information, such as timer

periods and maximum arrival rates, directly onto a data/control flow diagram.

11.3.1.6  Expressing Cardinality 

In another situation, a designer might wish to specify multiple cardinality for

transformations and data stores on a data/control flow diagram.  In the absence of an

appropriate notation, a designer must be consulted to specify any node cardinality that

exceeds one.  Unless otherwise instructed, CODA assumes a cardinality of one.

One approach to solve this problem is to provide attributes for annotating either

nodes on data/control flow diagrams or for annotating mini-specifications.  One of the

attributes might allow the cardinality associated with specific nodes to be annotated.

Another approach to address this problem might involve augmenting the specification

with additional constructs to allow the modeling of aggregation.  This is discussed further

in a subsequent paragraph (see 11.3.1.7.3). 

11.3.1.7  Specification Addenda

Three specification addenda, representing information that can improve the

quality of design decisions, cannot be inferred from a data/control flow diagram but must,
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instead, be elicited from the designer.  Where the designer does not provide this

information, CODA assumes no specification addenda exist.  Each case is identified

below.

11.3.1.7.1  Mutual Exclusion 

One addendum specifies exclusion groups.  Two types of exclusion groups can be

specified.  One type contains several transformations controlled by one state-transition

diagram.  Future extensions to the research described in this dissertation might permit

exclusion groups of this type to be established automatically by analyzing the

state-transition diagrams associated with each control transformation.  The second type of

exclusion group contains state-independent transformations that cannot execute

simultaneously.  A designer might glean the information required to identify exclusion

groups of this second type from reading the textual descriptions accompanying the

data/control flow diagram.  This information is unlikely to be inferred automatically but

perhaps extensions to the data/control flow diagram notation could allow a designer to

represent this knowledge directly.

11.3.1.7.2  Locked-State Events

A second specification addendum, locked-state events, cannot be inferred by

CODA.  Extensions to the research reported in this dissertation might enable an

automated partitioning of events into two sets: 1) those that are definitely not locked-state

events and 2) those that might be locked-state events.  Consultation with a designer

would still be required to select actual locked-state events from among the eligible set.
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To fully automate this process the data/control flow diagram notation would need to be

extended to express relationships among data flows and event flows entering and leaving

the terminators.  One such relationship might express, for example, where the input data

flow from one terminator could not occur until after the output data flow to a different

terminator.

11.3.1.7.3  Aggregation 

A third specification addendum, aggregation groups, also cannot be represented

nor inferred.  CODA must ask a designer to provide this information.  Extending the

RTSA method to permit aggregation information to be represented directly, perhaps

through an entity-relationship, or E-R, model that is mappable to components on a

data/control flow diagram, could eliminate the need to elicit this information from the

designer.  In addition, specification of cardinalities might be tied to the data/control flow

diagram through the E-R model.

11.3.2  Design Generation

 For the case studies described in Appendices B through E, the CODARTS

heuristics are automated to a point where CODA makes about 97% of the design

decisions without consulting a designer.  For the remaining design decisions, consultation

with an experienced designer proved advantageous because the best decisions depended

upon application-specific knowledge, unavailable to CODA.  Where an experienced

designer is not available or cannot provide relevant assistance, CODA takes default
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decisions, as necessary to generate a working, if suboptimal, design.  Situations where

CODA consults with a designer are identified and discussed below.

11.3.2.1  Allocating Transformations to Existing Tasks and Modules

In certain situations, a transformation proves difficult for CODA to allocate to an

appropriate task or module.  In particular, when a synchronous function connects, through

data flows, with several other transformations that are already allocated to a task or a

module, CODA alone cannot decide which of the possible allocations would be best.  In

addition, CODA consults a human designer during module structuring whenever a

transformation cannot be clearly allocated to one among a set of data stores with which

the transformation interacts.  In these situations, a designer, using application-specific

knowledge, might make judgments about the best allocation.  When a designer cannot

help, CODA allocates each transformation in question to a separate task or module.

11.3.2.2  Combining Tasks with Compatible Periods  

CODA’s lack of application-specific knowledge also affects, in part, decisions

about whether to combine tasks with compatible, but not identical, periods.  In such

cases, depending upon the relative differences in importance or function of each task, a

designer might choose to combine the tasks.   When an experienced designer is not

available for consultation, CODA chooses not to combine the tasks in question.

11.3.2.3  Combining Data-Abstraction Modules

Two situations concerning Data-Abstraction Modules, or DAMs, also cause

difficulty for CODA.  In one situation, a DAM might be read only by transformations
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within another DAM.  Depending upon the functional similarity of the two DAMs, a

designer might decide simply to combine them into a single DAM.  CODA, lacking the

required application-specific knowledge, refers such questions to an experienced

designer.  Where no experienced designer is available, CODA chooses not to combine the

DAMs in question.

In a second situation, CODA cannot determine whether an isolated, update-only

data store provides local storage for an existing module or whether the data store might

hold data used by another subsystem, unknown to CODA, and should, therefore, be

allocated to a separate DAM.  An experienced designer, possessing the necessary

application-specific knowledge, can help CODA decide how to allocate the data store in

question.  When an experienced designer is unavailable, CODA assumes that the data

store in question provides local storage for an existing module.

11.3.2.4  Determining Synchronization Requirements

Another difficulty faced by CODA occurs whenever the synchronization

requirements for data flows and event flows must be considered.  To make sensible

judgments in such cases, a designer applies application-specific knowledge about the

processing embodied within sending transformations.  CODA does not possess this

knowledge.  This lack of knowledge impedes automatic decision-making when mapping

data flows, particularly, and event flows, to a lesser degree, to either queued or

tightly-coupled messages.  To compensate for this difficulty CODA encodes two

convenient assumptions within the design-decision rules.  First, every event flow and data
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flow transmitted by a message and going in the same direction between a pair of tasks is

assumed to map to the same type of message.  This assumption prevents having to

consult the designer about the unique synchronization requirements of each event flow

and data flow between tasks.  A second assumption is that, in the absence of any

additional information, the data flows going in opposite directions between the same pairs

of tasks can be mapped to the same type of message.  Even with these assumptions,

whenever doubt exists, CODA must consult an experienced designer to make the initial

determination of synchronization requirements for messages exchanged between a pair of

tasks.  When an experienced designer cannot help, CODA simply maps questionable data

and event flows to queued messages.

11.4  Quality of Generated Designs

In addition to assessing the degree of automation achieved with the prototype, the

quality of the generated designs should also be considered.  Given that the approach

automates heuristics used by a human designer to generate concurrent designs from

data/control flow diagrams, designs generated by CODA can be compared against

designs generated from the same input by a human designer.  The four case studies

chosen for this dissertation consist of real-time problems, specified with text, data/control

flow diagrams, and, where applicable, state-transition diagrams, taken from the literature.

For each of these problems, a design, generated by a human designer, exists in the

literature.  This allows CODA’s solutions to be compared with existing solutions from

human designers.  For the case studies, the designs generated by CODA appear
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reasonably consistent with, though not always identical to, the preexisting designs.  Each

phase of the design-generation process is considered below.

11.4.1  Task Structure

For two case studies, the automobile cruise control and monitoring system and the

robot controller, CODA generated a task structure identical to that provided by Gomaa.

For the elevator control system, CODA could not treat the Elevator Manager and the

Elevator Controller tasks differently when considering task inversion.  Gomaa, however,

did treat the two tasks differently, inverting the Elevator Manager but not the Elevator

Controller.  Apparently, this discrepancy exists because the heuristics for task inversion,

as specified within CODARTS, are not given in sufficient detail.

For the remote temperature sensor application, CODA generated a task structure

that included the same number of tasks as in a design provided by Nielsen and Shumate.

Two differences exist, however, in the specifics of the tasks.  Nielsen and Shumate define

a task for relaying DP ACK signals from one task, Rx Host Message, to another,

Determine Host Output.  Since the target environment description used by CODA for this

problem assumes that software signals can be sent directly between tasks, this relay task

is not needed in the CODA solution.  On the other hand, the design generated by CODA

determines that messages sent from one task, Determine Host Output, to another task, Tx

Host Message, should be queued.  Since no message queuing is available, CODA creates

a queue-control task to hold the queued messages.  Nielsen and Shumate decide that the

messages sent between the same two tasks should be tightly-coupled; thus, they do not
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provide a queue-control task for that interface.  Both differences in the two designs result

from auxiliary tasks defined to provide interfaces between the main tasks in the design.

The basic tasks in both designs are identical; though this would not necessarily be the

case if the designer provides different information to CODA during the numerous

interactions required to solve this problem.

In the case of the remote temperature sensor, the resulting task structure depends

to a large degree on information provided by the designer relative to the classification of

aperiodic functions on the data/control flow diagram, and relative to the allocation of

synchronous functions that border on two or more tasks.  This information is

application-specific; a quite different task structure can be generated depending upon

what the designer says, if anything, regarding these questions.  In general, then, CODA

provides task structuring that appears very close to the human designer’s solution

whenever the input data/control flow diagram takes maximum advantage of the semantic

model provided by COBRA.  Without this, the task structure generated by CODA is

highly dependent upon any information elicited from the designer.

11.4.2  Module Structure

CODA’s module structuring decisions are close, but not always identical, to the

solutions given in the literature.  CODA’s module structuring for the automated cruise

control and monitoring system is identical to Gomaa’s, save in one particular.  CODA

generates a device-interface module for the time-of-day clock.  Gomaa assumes that this

function is built into the operating system and, thus, that no interface module is
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necessary.  Here, a difference in assumptions made by CODA and the human designer

lead to a difference in the solution.

Similarly, CODA’s module structuring solution for the robot controller matches

Gomaa’s solution quite closely.  CODA does, however, generate three modules that

Gomaa does not.  Two of these modules result from CODA’s insistence1 that each

transformation and data store on the data/control flow diagram be mapped to a module.

Two data transformations, Interpret Program Statement and Generate Axis Command,

form the basis for algorithm-hiding modules generated by CODA.  Additional data

transformations are placed inside these modules by CODA based on information

provided by the designer.  Gomaa simply does not map these data transformations to

modules.

Another difference between CODA’s solution and Gomaa’s solution occurs

because CODA creates a data-abstraction module, based upon a data store, Program ID,

and a function-driver module, based upon five data transformations that send data flows

to a single, virtual device, Output to Panel.  Gomaa combines these two modules,

allowing the function-driver module to subsume the data-abstraction module.  Here,

Gomaa makes a judgment beyond CODA’s reach.  A rule could be included within

CODA to recognize situations such as this, and then to refer them to an experienced

designer, but the ultimate decision to combine the modules must be made by the designer,

based upon application-specific knowledge.

1 Remember one goal of CODA is to allocate each element in the specification to at
least one component in the design.
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For the elevator control system, CODA’s module structure is identical to Gomaa’s,

except that CODA provides an algorithm-hiding module for the Scheduler.  Again, this is

based on CODA’s goal that each transformation and data store be assigned to a module.

In the case of the remote temperature sensor, comparison between the solution

provided by Nielsen and Shumate and CODA’s solution proves difficult because Nieslen

and Shumate do not map the data flow diagram to modules, instead they directly define

Ada packages based upon their task structure.  In general though, CODA’s module

structuring for the remote temperature sensor is driven in large part by information

elicited from the designer.  A range of module structures is possible, depending upon the

advice given by the designer.  This indicates that for module structures to be generated

most automatically by CODA, the data/control flow diagram should take maximum

advantage of COBRA’s semantic model.  In such cases, the module structures generated

by COBRA appear reasonably close to those generated by a human designer.  Where

data/control flow diagrams are constructed without adhering to COBRA’s semantic

model, the resulting module structure depends greatly upon information elicited from the

designer.

In addition to structuring modules, CODA goes on to determine module

operations, including parameters.  In general, the creation of module operations is highly

idiosyncratic, depending upon a range of considerations too detailed to represent easily in

design rules.  Since CODA pursues a goal of allocating each element in the specification

to an element in the design, rules are defined to map nodes and arcs to module operations.
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In most cases, the operations generated by CODA appear to be reasonable, though not

always matching the operations provided in the solutions given in the literature.  In one

case, the elevator control system, CODA generated an operation for a data-abstraction

module that had been overlooked by Gomaa.  Less reasonable is CODA’s mapping of

specification elements to operation parameters.  Here, simple mapping rules are used to

ensure all specification elements are mapped to design elements.  In many cases, a human

designer might choose to change the specification of operation parameters generated by

CODA.

11.4.3  Task and Module Integration

To integrate the task and module views within a concurrent design, CODA must

determine which modules are accessed by a single task and which modules are shared by

multiple tasks.  After making this determination, CODA must go on to identify the

calling relationships among tasks and shared modules.  These decisions, as made by

CODA, appear consistent, for the most part, with those made by the human designers.  A

few differences are worth noting.

In the automobile cruise control and monitoring case study, CODA identifies each

of two device-interface modules, Mileage Display and Maintenance Display, as being

accessed solely by a single task, Compute Average Mileage and Check Maintenance

Need, respectively.  This leads CODA to place each of these modules within the

accessing task.  Gomaa chooses, instead, to keep these modules outside any task.

Gomaa’s choice reflects a design structure where each module that generates information
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to be displayed calls directly to the display modules in order to write the information.

Since the calling modules are placed outside any task, the called modules are also placed

outside any task.  In general, to handle complex relationships between tasks and multiple,

shared modules, a designer can choose several approaches.  For example,  when a task

must invoke two operations, in separate modules in sequence, and the second operation

requires information from the first, three possibilities exist: 1) the task calls the operation

in the first module and that operation calls the operation in the second, passing any

needed data as an input parameter to the second operation; 2) the task calls the operation

in the first module and that operation returns data as an output parameter that the task

then passes as an input parameter when calling the operation in the second module; 3) the

task calls the operation in the first module and then the operation in the second module,

and the second operation calls another operation in the first module to get any data

needed.  To simplify decision-making and limit interaction with the designer, and also to

avoid unnecessary coupling, CODA consistently uses the second mapping; thus, when a

human designer chooses one of the other approaches, as Gomaa does for example in his

design for the automobile cruise control subsystem, CODA’s design differs.

11.4.4  Task Interfaces

In most instances, the task interfaces generated by CODA for the case studies

agree exactly with those provided by the preexisting solutions.  Differences that do, or

might, exist result from one of three factors.  Sometimes, CODA adopts a consistent

mapping rule in cases where a human designer might decide to devise a different
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mapping.  For example, in the elevator control system, CODA maps two event flows, Up

Request and Down Request from the Elevator Manager task to the Elevator Controller

task, onto software signals.  This mapping is made because the target environment used

in the case study allows up to two software signals between each pair of tasks.  Gomaa

chooses an alternative mapping.  This difference illustrates that in some situations the

rules defined for CODA lead consistently to specific mappings, even though a designer

might choose to use more judgment when applying the comparable CODARTS heuristic.

CODA might also generate task interfaces that differ from a preexisting solution

in cases where CODA relies on a designer’s judgment.  No such differences appear within

the case studies because the designer interacting with CODA always provides

information leading CODA to make decisions consistent with the decisions taken by the

human designer who developed the preexisting solution.  This need not have been the

case.  For example, in the robot controller application, Motion Blocks and Motion Ack

Queues are exchanged between two tasks using queued messages.  Queued messages

were selected by CODA because the designer indicated that inter-task synchronization

was not required for these data flows.  Had the designer indicated that synchronization

was necessary then CODA would map the same data flows to tightly-coupled messages.

On the other hand, where CODA can benefit from a designer’s advice but where

no experienced designer is available, CODA might also generate task interfaces that

differ from a preexisting solution.  In effect, the default mapping decisions that CODA

takes, in the absence of any advice, can cause CODA to choose queued messages in
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situations where a human designer might choose tightly-coupled messages.  Exactly this

situation arises in the case of the automobile cruise control and monitoring system, when

CODA generates a design for a novice designer.  The interface between the Auto Speed

Control task and the Throttle task, mapped by Gomaa to a tightly-coupled message, is

mapped instead by CODA to a queued message.

11.5  Interpretation of Results

Given the foregoing evaluation, what can one conclude about the scope of

applicability of the approach proposed in this dissertation for automating the generation

of concurrent designs?  First, the effectiveness of the approach varies depending upon the

manner in which the RTSA notation is used to model the problem behavior.  When the

designer models the problem using a data/control flow diagram that makes maximum use

of the COBRA guidelines and semantics, as for example in the automobile cruise control

system and elevator control system case studies (see Appendices B and D, respectively),

then the approach embodied in CODA proves most effective, and requires the least

amount of interaction with the designer.  The key to success is modeling the problem

based mainly upon objects (device interface objects, control objects, algorithm objects)

and data stores, while limiting the use of functions to provide only operations on data

stores.  When the problem is modeled using the guidance of RTSA but without the

guidelines and semantics of COBRA, as for example in the robot controller case study

(see Appendix C), then CODA still yields reasonable performance, although the amount

of interaction with the designer increases somewhat.  Using RTSA guidelines only,
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CODA can still view many of the edge transformations and control transformations as

objects, and can detect the presence of certain algorithm objects.  In such cases, CODA

can also map functions that interact with data stores onto operations on those data stores.

The increased interaction between CODA and the designer results from the presence of

functions that do not interact with data stores.  Such functions begin to transform the

data/control flow diagram into a functional decomposition.  In fact, CODA does not

perform very well for problem models that are based completely on functional

decomposition.  This limitation shows up in the remote temperature system case study

(see Appendix E).  In the case of the remote temperature system, CODA requires

substantial interaction with a designer to elicit application-specific information and hints

about the degree of functional cohesion exhibited among the functions depicted on the

data flow diagram.  As shown in Appendix E, when CODA is asked to generate a design

for a data flow diagram created using functional decomposition, then the resulting design

depends to a great degree upon guidance proved by the designer.  When no designer

guidance is available, CODA generates a design that mirrors closely the data flow

diagram.

A second issue to consider is the scalability of the proposed approach.  Given that

a problem model takes maximum advantage of the COBRA guidelines and semantics,

how large of a problem can be tackled by the proposed approach to automated design

generation?  The proposed approach imposes no limits on scalability that are not already

present in RTSA and COBRA.  Since RTSA notation provides for a hierarchical
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decomposition of a problem model, fairly large problems can be represented and

managed intellectually as subproblems.  However, since CODA processes a data/control

flow diagram as a flattened hierarchy, the effectiveness of CODA can be enhanced by

introducing a graphical user interface that connects CODA’s reasoning processes to the

user directly through pictures of both the data/control flow diagram hierarchy and the

evolving design.  While such an interface is not part of the research reported in this

dissertation, there appears to be no fundamental difficulty in providing such an interface.

One scalability issue does warrant noting however.  Checking a data/control flow

diagram to ensure that all axioms are satisfied can take quite some time as the size of the

diagram increases.  For the largest diagram among the case studies, the automobile cruise

control system, checking axioms takes several minutes on a 33 MHz Intel 486 processor.

A third applicability issue, related to scalability, is the potential for the approach

embodied in CODA to address distributed systems.  CODA addresses the generation of

concurrent designs for systems projected to run on a single node, be it a single or multiple

processor node.  To generate designs for distributed systems, the problem must be

partitioned into a set of subsystems that can each be processed on a single node.  CODA

can be used to generate a design for each of these subsystems.  CODA does provide a

subsystem interface object that can be used to represent connections between distributed

subsystems; but knitting these subsystems together is left to the designer.
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